High-performance Software Finulation of 1750A Processor

Kirk Reinholtz *

June 15, 1997

Abstract

We describe a software emulator of the M1 - SJ'I)-
1750A archit ecture that executes 1750A code at a
rate of about 4 MIPS cm a Sun 200 Mz Ultra2 work-
station, and effectively several times faster than that
wlien application-specific optimizations are used. A
number of optimization techniques were used, in-
cluding binary translation and an unusual emulation
of the 1750A timersandIhemory management unit.
The performance technologies used within the emula-
tor are for the most part applicable to the ciulation
of other processor architectures.

1 INTRODUCTION

We describe the implementation of a fast software
cmulator of the Ml [L-STD-1750A [1] processor archi-
tecture. The emulator executes 1750A binary op-
codes just as a hardware processor would, and be-
haves just as a hardware processor would if it exe-
cuted those opcodes.

The emulator is a performance-limiting component
of the 11SS serics of spacecraft siimulators{2]. A pur-
posc of 11SS is to emulate the “future” of operating
spaceeraft. Performance is thus critical, because it
must be possible to stay ahead of the operating space-
craft, while also maintaining a Ma 181 1y for recovery in
case of errors such that alternative futures must be
explored or a simulation must be restarted.

The primary optinization technique we use is bi-
Nayy translation [3]: We translate (portions of) the

*The work described was performed at the Jet Propulsion
1.aboratory, California Institute of Tectinology under contract
with the National Aeronautics and Space Admiuistration.

1750A code into the native instruction set of the host
processor, 8o it can be executed much more efficiently.
During the translation we also perform a nunmber of
specialized optimizations: Opcodes are decoded more
extensively than is possible during runtime; Certain
status bits are not computed if a subsequent instruc-
tion writes it again; and code to detect exceptions
(c.g. arithmetic overflow) is not generated if it can
be proven that either the exception can not oceur or
that it will be ignored.

Unlike other binary transtators in the literature
[3, 4, 5], wetranslate blocks of 1750A code into C4 +
functions, rather than directly into native code. The
transtated product is thus highly portable, and we
don ‘t have to duplicate the opt imizations of a tra-
ditional compiler: the C++4 compiler does those for
us. Maintenance costs are reduced, and judging from
anexamination of the resulting code, performance is
comparable to that of code generated by a custom
cornpiler.

We do not require that all 1750A code be trans-
lated: the enmwlator win use translated blocks where
available, resort ing to interpretation as necessary.
I'his fallback raechanism is an important feature of
our emulator, since spacecraft code (and thus the
code in our emul ator) can be altered while it is exe-
cuting.

We also optimized the MMU (“Memory Manage-
ment Unit”) algorithin, reducing it’s amortized cost
per access from dozens of lines of C++4 to a couple
of conditionals.

2 RELATED WORK

There is a long history of attempts to improve the
performance of interpretive systems. One historical
thread passes through the history of interpreted vir-
tual machine Languages de jour: e.g. Smalltalk{4],
APL[6], Forth{7], and most recently Java; and an-
other through computer systems that support execu-
tion of programs built for other computer systems[8,
3,9].

Most of the optimizations we usc have been used
previously, in significant undertakings of 1 BM [8] and
later by Dligital[3]. Unique to our systemn is the
usc of an existing compiler system to perform tra-
ditional optimizations, coupled with domain-specific
optimizations performed by our translator. Qur ap-
p roach greatly reduces the cost of the development
and maintenance of the emulator, yet provides the
sophisticated optimizations of other approaches.

3ARCHITECTURE

The cmulator implements all MIL-STD-1750A fea-
tures, and a number of vendor-specific[10] and hfll,-
S§$1'])-175011[11] extensions. Feature sets (e.g. break-
points, instruction tracing, vendor-specific exten-
sions) may be collected into personalitics, all of which
share the same CPU state and so can be switched
during execution of the emulator. Thus features un-
necessary to a particular application, or even to an
execution phase of the same application, do not im-
pact the performance of the application.

The 1750A emulator is designed to exhibit fidelity
sufticient that it is not possible to write a 1750A pro-
gram that can discriminate between a hardware pro-
cessor anti the emulator. To this end, the emulator
is tested with the Wright-Patterson AFB 1750A test
suite known as 1750A VSW (Verification Software),
version 2.4.1: The same tests that arc used to certify
hardware implementations of the 1750A architecture.
The suite has several hundred test sets, and thou-
sands of individual test vectors, that exercise most
aspects of the 1750A architecture.

The emulator can be interfaced with external com-
ponents. Kach page of meamory is cither mapped di-

rectly into RAM, for ultimate performaunce, or more
generally into an ifo dispatch unit that individually
associates each word in the page with some address in
some external model or somne address in RAM. Such
accesses call read/write functions in the external de-
vice, and so can envoke arbitrary computations, thus
providing a facility that has recently been termed
“Active Memory”[12].

The emulator architecture is basedupon the usual
interpreter loop, as outlined in approximate and sim-
plified form in figure 1). Registers are implemented
as an array R. Union stru ctures are used to decode
and extract various bit fields from the instruction.

Certain opcodes (sclected from the set of unused
opcodes) e.g. 0x5B in figure 1 cause functions to be
called, rather than opcodes to be interpreted. This
is the basis of the binary trauslation optimization.

int execute {(int cycles _to_do)

int c_done = O

tcache = do_timers(c_done)

while(c_done < cycles_to_do)
check_interrupts()
instr = MemRead(R[IC])
RIIC] += length_of(instr)
c_done += cycles_of (instr)
switch(instr.opcode)

case 0xbb:
c_done += fast [instr.vall (this)
break

endswitch
if(c_done >= tcache)
tcache = do_timers(c_done)
endif
endwhile
return c_done

Figure 1: Fnmulatoralgorithm

4 OPTIMIZATIONS

4.1 Binary Translation

Binary translation refers to the act of converting a se-
quence of binary code from one format (e.g. 1750A)
to another (c.g. SPARC) , such that the latter frag-
mient of code behaves exactly as the former with re-
spect to the visible state of the former. In other
words, the SPARC code manipulates the enlated
1750A registers and memory exactly as dots the
1750A code, but it executes directly on the SPARC
processor rather than within an interpreter.

Binary translation is Often used to increase the
performance of interpretive systems, aud dots so on
three basic fronts: It eliminates some interpretive
overhead, since that overhead becomes subsumed by
the SPARC processor itself; Some things may be pre-
computed during the translation, for example regis-
ter fields within the 1750A opcode; and certain other
optimizations become possible, sitice a scquence of
opcodes is translated and thus certain flow-based in -
formationcan be used that is not available to anin-
terpretive architecture.

o ur translator operates in two phases: First, it
translates the 1750A code scquencesinto G+ func-
tions with equivialent seimantics, but with certain
domain-spccific optimizations applied. Then the host
C++4 compiler translates the C4 + functions into na-
tive code, during which an of the usual compiler op-
timizations arc performed. The output of the first
stage is designed to make it easy fort he commpiler to
optimize the code.

As a last resort, the C++functions may be edited
manually before compilation, though we have not
found this necessary. W c in fact tried to optimize
some of the functions beyond what is done by the
translator (e.g. manual dataflow analyis), but found
the results of minimal consequer ice. From this we
conjecture that there isn’t much more performance
to be gained from increasing the sophistication of the
translator optimizations.

The translator performs anumber of optimizations
specific to the 1750A, outlined here.

Compile-tiine opcode decoding The interpreter
must extract certain information from ecach op-

code each time the opcode is encount ered. For
example, some bitfields in the opeode specify
whichiindex and other registers to use. Siunce
the value of those fields does not change dur-
ing program execution, thet ranslator dots the
decoding duving the translation, providing two
benefits: We avoid the cost of runtime decoding;
and the compiler has more opportunity to opti-
mize, since e.g. array indexes into the register
data structure become known at compile-time.

Defer CC writes In a dynamic sense, many 1750A
opcodes write to the condition codes, but many
less read the results. We found it profitable to
supress the code that writes the condition codes
if there is a subsequent write before a subsequent
read.

Don’t compute exceptions Many 1750A arith-
metic operations chieck for exceptional condi -
tions, e.g. overflow and underflow. It is costly to
perform the checks in software, so the translator
supresses generation Of the code that p erforn 1s
the checks if it can be known that either the ex-
ception will be ignored or can not occur.

Branches converted to C+4 + conditionals In
cases we translate 1750A conditional
branches divectly into C+4 4 code, which vir-
tually ecliminates the cost of emulating the
branch.

retain

42 Memory Management Unit

The 1750a MM U takes as input a 16-bit logical ad-
dress, address type (instruction or operand), access
mode (read or write), address state, and perhaps data
to be written. It validates the operation against the
current protection mode of the CPU, and if the op-
cration is legal it performs the operation, otherwise
it sets certain status bits to indicate what type of
violation occured, which may subsequently cause an
interrupt to be asserted.

The algorithm required to compute the physical
address and legality of the operation is substantial,
and would take miany instruction-times to compute
were it emulated for each miemory access. 1 owever,

the CPU state items that) affect the outcome of the
computation, other than the logical address, donot
often change.

We therefore pre-compute the legality of accessto
each logical page.If the logica page refers to physical
RAM and allows both reads and writes, we put the
physical address directly into a MM U cache such that
the physical RAM location canbe quickly located, If
the logical page is fully accessable,or refers to some-
thing other than RAM (e.g. a hardware i/o regis-
ter) then the MMU cache slot is set to zero, which
causcs the! fullM MU algorithmn to be perforined upon
the address. Thus most operations (legal reads and
writes) execute very quickly. Only unusual conditions
(illegal accesses or hardware i/o) executeslowly.

The MMU cache is implemented as an array in-
dexed by logical page number that contains either
zero, which indicates that the full MMU algorithm
must be applied, or au address such that the follow-
ing expression yields the address inhost memniory to
which the logical address refers.

paddr = cache [1pagel+laddr

To write a value to the address requires only tile
following operation. This computation cari be per-
formed iu a few host iustruction tiines, as opposed to
many tens or perhaps hundreds of host iustruction
times required to compute the full MMU algorithm.

if cache[tmp=(laddr>> 12)] != O then
x(cache [tmpl+laddr) = value

else
full_MMU_write(laddr,value)

endif

Note that the value iu the cache array is not just
the offset to the page, but includes compensation so
that the logical address may simply be added to the
cache value. Otherwise you would have to expend
more cycles extracting the offset, from the logical ad-
dress.

The contents of the cache array is initialized every
time the address state changes, and every time the
page registers for the relevant page are modified.

4.3 Lazy evaluation of arithmetic con-
dition codes

Many arithmetic and other operations return not
only aresult, but set cert ain condition flags as well.
The 1750A has four condition codes: carry /borrow,
positive, zero, negative. There is a bit in the CS field
of the SWregister for each of these conditions.

Consider an opcode that computes RO- - RO + R1.
The following code fragment shows hiow this would
be implemented w/o lazy evaluation:

RO = RO + R1
if (RO > 65535)
SW |= 0x8000
RO -= 65536
endif
if(RO> O)
SWil= 0X4000
elseif (RO> O)
Sw |=0x1000
else
(RO == 0)SWl= 0x2000
endif

Note that this requires u significant amount of code
to compute the condition codes.

Instead, we use the same techuique as outlined in
[3]: Simply save theresult of the operation (in this
case R0)and only conduct the checks should a later
operation require the results, Thus our code for the
above looks like this:

RO = RO + RI

if (RO> 65535)
SW |= 0x8000
RO -= 65536

endif

CSlazy = RO

Here is how a code fragment would check that the
result of a previous operation was positive, for both
fragments above. (A) is for the naive implementa-
tion, (B) is for our implementation:

A if (SW&0x2000) . . .
B: if(CSlazy == O) . . .

You cau see that our method does not impose sig-
nificant burden on this comprutation, eithier, and so
docs provide a performance improvement. We usc
this same technique in the interpreter aud the binary
translator.

In the 1750A it is possible to force the condition
codes to represent conflicting states, e.g. negative
and positive, simultaniously. For this reason ¢ Slazy
carries a “valid” bit (not shownin the examples) that,
if clear,indicates that the actual condition codes
m ust be examined. We have not observerd this situ -
ation in practice, but we do sce in in the VSW tests.

4.4 Floating-point

Floating point is used heavily by many acrospace ap-
plications, for example navigation and attitude con-
trol. Performance is thus immportant, and optimized
as outlined in this scction.

MIL-STD-1750A specifies a particular data format
and implementation of floating point, unfortunately
not ANSI/I EEEStd 754-1985. (if it were, we could
straightforw ardly use the workstation 1 XK1 floating-
point hardware that is nearly the universal standard
today.) Rather than implement the floating point
as many lines of €44 code following the algorithn 1s
specified in the standard, we instead translate the
operands, during runtime, into TEEE 754 format (or,
more generally, the native format of the host com-
puter), perform the operation on the workstation
hardware, then convert the results back to 1750A for-
mat.

We found that particular attention must be paid
to the details of conversion and overflow, underflow
and rounding. Fortunately the VSW tests include a
large number of vectors to explore the behavior of
the floating point implementation, as otherwise it is
likely that we would have made undetected mistakes.

45 Timers

The 1750A hastwotimers, cdled timer A andtimer
B. Fach has a 16-b it counter, and a reload value.
The A and B counters are incremented (i.e. “tick”)
every 10 and 100 miicroseconds, respectively. When
a counter rolls over to zero. it causes aninterrunt to

be posted, and the counter is reloaded with its reload
value.

Timer emulation must be fast, since it executes ev-
cry instruction, and it must not drift, since it is pos-
sible for software to compare the timer rate against
anexternal soource.

We express the timer rates in rational form, “n”
CPU eycles per “m” counter ticks so that most clock
rates canbe exactly expressed and therefor clock drift
relative to timer ticks can be prevented. Vis timer
A, 1.25 MHz is 25 instructions per 2 ticks. Floating
point dots not climinate the problem, and is much
slower tha ninteger arithietic on most workstations.

Figure 2 outlines a siinple ut correct inplemen-
tation of a 1750A timer. “ace” and “counter” are
16-bit uusigned integers. “olt,” is the number of in-
struction cycles by whichi the timer is to be advanced.
The algorithim costs at, least a couple of conditional
branches and a couple of arithmetic operations each
time this code fragment is executed, and it must be
e xecuted pretty much after each in str uction is exe-
cuted. It is apparent that this is a significant perfor-
mance bottleneck.

if(timer _enabl ed)
acc += mxdt
dt=0
while (acc >= n)
acc -= n
counter += 1
if(counter == O)
interrupt ()
counter
endif
endwhile
fi

= initial_value

Figure 2: Naive timer algorithmn

To improve the performance of this algorithin, e
simply adva nce @t to the first pre-computed point
in the future at which either the counter will roll to
zero, or just before and arithmetic overflow would
occur. Also, if the CPU observes or clianges the state
of the timer registers, then dt must be written to

those registers before the observation or change takes
place. The timer overhead thus amortized to about
one compare PET interpreter cycle.

Figure 3 shows fast algorithm. Note that the body
of the algorithm executes only when dt has advanced
far enough to cause a tiner interrupt to occur (as
opposed to every few instructions in the naive im-
plementatio n), so the loop overhead imposed by the
timer is dominated by the single commparson of dt to
tcache.

if (8t >= tLcache)
old_cnt = ((int)counter)
counter = counter + (((int)acc)+dt*m)/n
acc = (((int)acc)+dt*m)¥%n
if (counter < old_cnt)
interrupt
counter += initial_value
endif
dt=0
endif

Figure 3: Fast timer algorithm

Finally, figure 4 lists the algorithm that computes
the value of tcache at which the timer will next cause
an interrupt.

d2 = (n*(65536-counter)-acc-dt*m+m-1) /m
d3 = (65535-ace)/m-dt
tcache = min(d2,d3)

Figure 4: Computation of teache

5 FURTHER WORK

The current system uses a static database that asso-
ciates cach block with an address in cach version Of
software. We conjecture that ficlded flight software
dots not change often, and when it dots change, it
doesn’t change a lot. This suggests that most blocks
arc probably still valid, though their installation ad-
dresses may have changed. We propose to dynam i-
cally place blocks, perhaps based upona signature of

the opcode sequence to which each applies, so that
the system gracefully adapts to new versions of the
flight software. It would still be necessary to add to
the block librarvy as time goes on, but for normal small
changes it would not be necessary to pay attention to
the binary translation system.

We would like to revisit the MOV instruction. If,
for example, we could prove that a certain instance of
MOV has both its source and destination in RAM, we
could then replace the instance with a native mem-
cpy(). This would improve performance two ways:
(1) MOV becomes faster; and (2) that particular
MOV would not terminate a block translation.

6 CONCLUSION

We have constructed an “industrial strengeh” 1750A
cmulator that operates at several MIPS on real code
(not a simple benclimark) on circa '97 workstations,
and can deliver effective performance well beyond
that number using simple application-specific opti-
mizations.

A OVERVIEW OF 1750A

MIL-STD-1750A specifies an instruction st architec-
ture (“ISA”). It explicitly does not address physical
concerns, e.g. speed, weight, power, i/0 capabili-
ties, and so on. The intent is that code is portable
amongst compliant processor implimentations.

The 1750A specifies a sixteen-bit data word,
sixteen-bit logical addresses, and twenty (1" more)
bit physical addresses. ‘1’here aresixteen address
st ates, cach of which naps a set of AKWord pages
into the physical address space. Fach page is marked
either read-only, execute-only, or read/writ,e. Fur-
thier, the physical address space has write protection
in TKWord units. The 1750A has floating point iu-
structions, using 1750)A-specific floating-point data
formats and algorithms.

The once-proposed M1 1,-S'1'1)-1750} 1, and most
vendor extensions to MIL-ST1)-1750A, basically add
some additional instructions, and accomodation o f

larger physical address space, to the base 1750A ar-
chitecture.

References

[1] Military Standard Sixteen-llit Instruction Sct
Architecture. Department of Defense, July 1980.
MIL-STD-1750A (USAF).

[2] A. Morrissettet a. Multimission 1 ligh Speed
Spacecraft Simulation Yor The Galileo and
Cassini Missions. In A 1A A Compuling in
A erospace Conference 9th, San Diego, CA, Oc-
tober 19-21, 1993. AmecricanInstitute of Aero-
nautics and Astronautics, October 1993.

[3]R.1. sites, A. Chernoff, M.B.Kirk, M.P. Marks,
and S. G. Robi nson. Binary Translation. Com-
munications of the ACM, 36(2):69 81, 1993.

[4] 1.P.Deutsch and A.M. Schiffinan. Kfficient -
plementation of the SmallTalk-80 System. A CM
Symposium on Principles of Programming Lan-
guages, January, TBD(TBD):297 302, 1984.

[5] A.B.Bergh, K. Keliman, D.J Magenheimer, and
J.A Miller. HP 3000 Emulation o1z 1 [1' Preci-
sion Architecture Computers. Hewlett-Packard
Journal, TBD(TBD):87- 89, 1997.

[6] H.J. Saal and Z. Weiss. A Software 1 ligh Per-
formance APL Interpreter. APL Quole Quad,
9(4):74 81, June 1979.

[7] P.M. Kogge. Anw Architectural ‘Irail to
Threaded-Code Systems. Compuler, 15(3):22
32, March 1992.

[8] C.May. MIMIC: A Fast System /370 Simulator.
SIGPLAN,22(7):1- 13, 1987.

[9] L. Wirbel. D OS-to-Unix Compiler. Electronic
Engincering Times, pages 83 cond, March 14
1988.

[10] Generic VHSIC Spaceborne Computer (Phase
11), 1989.

[11] Proposed SAL Standard sixteen-bit computer
set, architecture. Depavtment of Defense, June
1989. DRAFT MIL-STD-175018 (USAF).

[12] A. I{. Lebeck and DA Wood. Active Memory:
A new Abstraction for Memory Systems Silllul:l-
tion. A CMTransactionson Modeling and Com-
puler Simulation, 7(1) :42 76, January 1997.

